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ABSZRACT

A theorem is proved vwhich gives sufficient
conditions under vhich electromagnetic backscatter
from an inhomogeneous object vanishes identically.
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I. INTRODUCTION
The result to be proved may be stated as followa]':

If a plane wvave is incident along the axis of symmetry of an axially
symmetric scatterer, and if the relative permittivity and permeability of
the obstacle satisfy the relation e(r) = u(z), then the radar cross-
section is identically gzero for all ﬁequohcies.

The theorem will first be proved in its general form, then demonstrated
for the important special case of an inhomogeneocus spherically symmetric
scatterer. The analytical methods of the latter derivation will also be
used to deduce the angular distribution of low frequency radiation scattered
from such a medium. An interesting result at high frequencies will also
be pointed out.

II. FROOF OF THE THEOREM

Maxwell's equations, assuming harmonic time dependence, may be written

in the form of two stationary wave equations

VxVxg -+ v - HE- xVaza0

Vxng-kzg+U(£)g--v—‘(‘-z‘,§)- xVxg=0 ,

where the relative permittivity ¢ and relative permeability u are arbitrary

(1)

complex functions of r, and U(g) = &° [1 - u(g) e(;)] . The standard
boundary conditions for a scattering problem will be assumed: at infinity
the total fields are the sum of an incident plane wave and an outgoing
spherical vave; the usual continuity conditions at surfaces of discontimuity,
1f any, of ¢<(z) and u(z) vill also be assumed.



Tt will be convenient to replace the differential equations plus

boundary conditions by the two integral equations
50 -5, + [0t £ - |0 Be) - AL x Ve 5o e

Bx) = 5,G) +f a(x, x') [U(g') E(z') - l;aﬁ)-xv'xg(;')] ',

where the tensor Green's function G(r, r') is the outgoing solution of

(2)

VxVxog x') -8 oz, £') = - 1§ (x - 1')
with the explicit form

o x') = (1- 3 vV ez, £)
ikR g

s@x) =y o Bex-x -
To specialize to the axially symmetric problem, the axis of symmetry will
be chosen to be in the direction of propagation of the incident plane wave,
i.e., 50 x‘g: is a vector pointing in the ﬁo direction. The assumption
of an outgoing scattered wave implies that, in the backward direction, the
phase of H relative to that of § has been changed so that }.c.tt.x ‘g:cutt.

18 & vector pointing in the -ﬁo direction. (The change in relative phase
of E and H 1s possible since E and § are solutions of differenmt equations.)

Suppose now that ¢(r)™ u(r). The integral equations for R and H are
then identical, and they may be written as the single integral equation

k(z) =k, @) +f0(;, x') - [U(,z;') k(') - SZ,;& xV x ,ls(.z;')] LA (3)



There are two linearly independent vector solutions to this equation, one
corresponding to lgo(z) polarized in, say, the x-direction and the other
corresponding to §°(£) polarized in the y-direction (the +z-direction is
then the direction of propagation, E‘o, of the incident wave). In the

first case the assumed axial symmetry requires the backscattered field to
be polarized in the x-direction, while in the second case the backscattered
field must be polarized in the y-direction. Murthermore, because of the
axial symeetry the phase change of the x-polarized backscattered wave must
be exactly equal to the phase change of the y-polarized backscattered wave.
Therefore, the relative phase of the two scattered waves is the same as
their relative phase in the incident wave. Identifying E with the solution
corresponding to the x-polarized incideat wave and EH with the solution
corresponding to the y-polariszed incident wave, we conclude that
Escatt.x‘vg:cstt. must be a vector pointing in the direction of propagation
of the incident wave. But this is consistent with the assumption of
outgoing scattered waves only if the backscattered fields are identically
zero. There are no explicit restrictions on frequency, and the theorem

is therefore valid for all frequenciles for which ¢ = u.

Note that the strict equality of ¢(r) and u(x) is actually not
necessary for the validity of the theorem. From Eqs. (1), it is clear
that the E and H equations are idemtical provided only that u(r) = be(z),
vhere b 1s any constant. (This relation must be satisfied, of course,
throughout the whole space containimg source and scatterer.) The proof,
for b £ 1, proceeds essentially as before, with only a re-definition of
the "free-space” wvave mmber roduircd.
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III. REMARKS

An interesting consequence of the fact that the E and p: fields are
described by a single vector equation is that there exists an explicit
non-differential relation between the E and H fields. It may be shown
that 1f K(r) 1is & solution to Eq. (3), then Q‘IS(R"J‘ r) is also s solu-
tion, where ¢ is the rotation operator (referred to a Cartesian basis)

0 -1 O
ﬁ’ l 0 0 .
o 0 2

This may be established by operating on Eq. (3) vith & and replacing the
arguments r, r' of the scalar, vector,and tensor functions by ﬂ']};,
R~} x', and using the symsetry relations, u(R™ r') = u(z'),

RUR™Y 5, R g R ™ = o(z, £'). Since the tncident rield X (5) 1is

& plase wave propagating in the +z-direction, ve may choose X (3) = ReikE,
Then @"l_(o( /2 2 =9 ™% 14 & vector representing an incident plane wave
polarized in the +y-direction. Therefore, if K(r) is one solution of

K. (3), RK(R™ 1) 1s the second linearly independent solutipn, and ve

my identify E(r) and H(r) vith K(x) and RK(R "L 1), respectively®.

Incidentally, the relation H(r) = o?g(@'l ) can nov be used to give
& very simple proof of the theorem, for on the z-axis al(ﬂ"lz) = q;(;),
50 that the s-component of S = E x H becomes simply

8,(0, 0, ) -| 2 (0, o, z)|z + |8 (0, 0, z)l2 .



Since S z(O, 0, z) = 0, the far-zone scattered field on the symmetry axis
must propagate only in the +z-direction, which contradicts the outgoing-
wave boundary condition in the backward direction, unless the scattered
field 18 zero.

Since the backscatter cross-section is zero vhen e(z) = u(r), it
should increare comtimuously from zero as ¢(r) - u(r) is allowed to
differ slightly from zero everywhere. This migges‘és that there may
exist an expansion of the fields in temms of a uniforaly small quantity,
f[e(;)] - r[u(g)], which should hold for large, as well as small, values
of e. In any case, the fact that the cross-section in the backward
direction must vanish when ¢ = u, should serve as an additional validity
criterion for any approximation method developed to apply when ¢ and p
both differ from unity.

IV. THE SPHERICALLY SYMMETRIC CASE

It would be useful if the angular distribution of the radiation,
vhen p = ¢, could be compared with that when ¢ £ u = 1 in order to
determine whether the radiation which is not scattered in the beckward
direction appears instead at angles close to x, or vhether the forward
scattering amplitude is enhanced. Such a comparison is not possibdle
for the general case. However, it will now be shown that, for long
wvavelengths, the angular distribution for a spherically symmetric, but
inhomogeneous, scatterer has a particularly simple form vhen e(r) = u(r),
and that the radiation pattern is peaked in the forward direction.



It may be verified by direct substitution into the Maxwell equations

that the general solution3 to the spherically symmetric problem is

o) B =Vx ) el) Yo) 5]+ 2 V{0 [ g0 5] ] )

ik B(z) = VxB(z) , (5)

vhere ¥ and § satisfy the following equations:

VAL [kz pe = ui d—:z-g (u'é)]“" =0 , (6)
2
V2¢+[k2ue-e% ;dg(e%)]¢-o . (7

The boundary conditions on Y and § must be such that

-1
E(z) ——3 R exp(ikz) + A(0,¢) r™ exp(iir) . 8)
Here, X 1s the initial polarization, and A is the vector scattering
amplitude. The absolute square of A is the differential cross section.

The radial equations associated with Eqe. (6) and (7) are

2 2

;dz (rnl) + [kzu‘ - “& d;:_z_ (u-%) - —“#-ﬁ)-] rRR =0 ,
2 2

;—g (rsl) + [kzue - eé -;-‘:-2- (e'&) - L‘ff’—ll] 1‘31- o,

with boundary conditions

rRi ’ rsl;—_—,?o ’

rl!l pryry=4 sin(kr - ix/2 +81) ,

8 e stalir - de/z Y )
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The phase shifts, AL and Vh , determine the scattering. When u(r) = ¢(r),
the radial equations are identical, and Sl - "ll .

The scattering amplitude is derived by substituting expansions of the

form
L La R Y00, 9)

for ¥ and ¢ in Eq. (4). The expansion coeffic{ents can then be evaluated
by imposing the asymptotic condition, Eq. (8), provided that the vector
plane wvave ig expressed by its known expunb:lonh in spherical harmonics. In
general, A is a complicated function of angles, but because of the equality
of the phase shifts § L ot \“ vhen u(r) = ¢(r), considerable simplification
of the vector scattering amplitude is possible., It is readily shown that in
this case A(0, § ) reduces to the relatively simple expression

o §
A, #) = (2107 (con $8 - sm g i) I 24 0 Ly @ -0 fﬁfi

+ Q(Q-o- 1) Pl(r)] ’ ©)

where ta= cos 0. The theorem can now be easily verified for this special
case since, for O = x, the quantity in square brackets vanishes for every
value of § , and A(x) is therefore identically sero.

When ka << 1, vhere a is the characteristic dimemsion of the scatterer,
only the = 1 phase shift is important, and one finds from Eq. (9) tbat

IA(O, ¢)| 2. “-22- l:l.nzsl_ (1 + cos 0)2



in contrast to a (1 + cos2 Q) angular dependence of the differential cross-
section vhen u = J..5 Thus, at least in the long wave length limit, the
distribution shifts to predominantly forward scattering. Whether this is
true also at higher frequencies is not known. However, for sufficiently
short wavelengths the Schiff high-energy approximation for large-angle
electromagnetic sca'l'.t'.er:lng6 can, in principle, be used to compute the
angular distribution in the neighborhood of the backward direction.

It is interesting to note that the Schiff formula also yields zero
for the scattered amplitude in the backward direction when e(z) = u(x),
under no assumptions other than ¢y - 1l<<= 1 and kR>=> 1, vhere R is
& characteristic dimension of the scatterer. The assumption of axial
symmetry is not required; thus the theorem should be approximtely valid
for an arbitrary scatterer, provided only that ¢ = paA21, kR> > 1,
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